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Abstract. The translationally invariant diagrammatic quantum perturbation theory (TPT) is applied to
the polaron problem on the 1D lattice, modeled through the Holstein Hamiltonian with the phonon fre-
quency ω0, the electron hopping t and the electron-phonon coupling constant g. The self-energy dia-
grams of the fourth-order in g are calculated exactly for an intermittently added electron, in addition
to the previously known second-order term. The corresponding quadratic and quartic corrections to the
polaron ground state energy become comparable at t/ω0 > 1 for g/ω0 ∼ (t/ω0)

1/4 when the electron
self-trapping and translation become adiabatic. The corresponding non adiabatic/adiabatic crossover oc-
curs while the polaron width is large, i.e. the lattice coarsening negligible. This result is extended to the
range (t/ω0)

1/2 > g/ω0 > (t/ω0)
1/4 > 1 by considering the scaling properties of the high-order self-energy

diagrams. It is shown that the polaron ground state energy, its width and the effective mass agree with the
results found traditionally from the broken symmetry side, kinematic corrections included. The Landau
self-trapping of the electron in the classic self-consistent, localized displacement potential, the restoration
of the translational symmetry by the classic translational Goldstone mode and the quantization of the
polaronic translational coordinate are thus all encompassed by a quantum theory which is translationally
invariant from the outset. This represents the first example, open to various generalizations, of the capabil-
ity of TPT to hold through the adiabatic symmetry breaking crossover. Plausible arguments are also given
that TPT can describe the g/ω0 > (t/ω0)

1/2 regime of the small polaron with adiabatic or non-adiabatic
translation, i.e., that TPT can cover the whole g/ω0, t/ω0 parameter space of the Holstein Hamiltonian.

PACS. 71.38.-k Polarons and electron-phonon interactions – 63.20.Kr Phonon-electron and phonon-
phonon interactions

1 Introduction

The polaron is one of the earliest examples of a topolog-
ical particle associated with symmetry breaking. Similar
examples in the condensed physics are phasons [1], soli-
tons [2], magnetic polarons [3], Kosterliz-Thouless vorti-
ces [4], Zhang-Rice singlets [5], and many others. Polaron
was initially introduced by Landau [6] as a state of an
electron coupled to the classical deformation field, which,
by adiabatic self-localization of the electron (electron self-
trapping), breaks the original translational symmetry of
the Hamiltonian. The corresponding symmetry restoring
Goldstone mode (classical or quantum) is then the trans-
lation of the polaron [7–9].

This description of the (adiabatic) polaron, from the
broken symmetry side, suggests that the translationally
invariant quantum perturbation theory (TPT) in terms
of the electron-phonon (e-p) coupling constant g, cannot
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reach such a (symmetry restored) state. Indeed, the sym-
metry breaking (at T = 0) is, as a rule, associated with the
singularity (quantum critical point, QCP) in the ground
state energy as a function of g. This is usually taken to
restrict the use of TPT to the high symmetry (transla-
tionally invariant) phase on one side of the QCP. On the
other hand, the study of some continuous e-p Hamilto-
nians (including the 3D Fröhlich Hamiltonian which ex-
hibits a polaron as a classic solution), concluded that the
corresponding quantum ground state energy is a smooth
function of g [10]. This shows that, depending on the di-
mension of the system and the range of the forces, the
quantum fluctuations of the deformation field can remove
the QCP and replace it by a smooth crossover. However,
this does not guarantee that TPT can hold through such
a crossover [11–13], because the absence of a singularity
for g’s, which make the Hamiltonian hermitian, can say
nothing about the radius of convergence and the behav-
ior of the perturbation series in the complex g plane. The
question is not only whether TPT can hold through the
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symmetry breaking crossover in principle [14] but also how
and for which physical regimes [15] this can be done in
practice. Some elements of the answer to this question are
given here.

In the adiabatic limit, which is of the main inter-
est here, the electron is “self-trapped” (adiabatic self-
trapping), staying always in the same localized state,
which moves with the polaron distortion of the lattice.
In the continuous approximation, the adiabatic polaron is
free to move along the lattice. However, the lattice coars-
ening introduces the Peierls-Nabarro (PN) or Umklapp
potential [16,17] into the motion of the adiabatic polaron.
If treated classically, even a tiny periodic potential pins
the polaron of mass Mp to the lattice. There are thus two
possible, separate, mechanisms which can break the trans-
lational symmetry of the lattice on the adiabatic level. The
first is the adiabatic self-trapping of the electron. The sec-
ond is the pinning of the adiabatic polaron to the PN
potential of the lattice. However, although there are two
symmetry breaking mechanisms, there is only one sym-
metry to break, namely the translational symmetry of the
lattice. It is therefore important to distinguish between the
electron adiabatic self-trapping and the polaron pinning.
As the electron adiabatic self-trapping is prerequisite for
the polaron pinning, it is the fundamental mechanism of
symmetry breaking. For this reason, the problem of the
applicability of the TPT is focused here on the electron
adiabatic self-trapping on the lattice.

In fact, the inter-relation of the electron self-trapping
and the polaron pinning can be fully understood in the
adiabatic regime. As illustrated schematically in Figure 1,
the adiabatic regime can be reached from the weak and
from the strong coupling side. For small g, the quantum
electron-phonon system is described reasonably well by
the lowest order perturbation theory in the e-p coupling,
which is apparently translationally invariant and nonadi-
abatic [24]. For the discrete lattice the polaron motion is
nonadiabatic also for extremely large g. The electron must
use phonons nonadiabatically to leave its (too) strongly
pinned adiabatic phonon correlation cloud in order to
gain the delocalization energy. Obviously, this quantum
state is also translationally invariant. The adiabatic po-
laron regime, if it exists, is thus separated from the two
nonadiabatic, translationally invariant regimes either by
a pair of QCP’s or by a pair of corresponding crossovers.
Which is the case can be found from either (small or large
g) side. Again however, in the case when QCP’s are re-
placed by crossovers, it remains to be proven that TPT
can hold through them.

To make the picture complete, it should be further
realized that on coming from the low g side, the QCP
or the crossover corresponding to the electron adiabatic
self-trapping can, generally speaking, occur either towards
the large adiabatic polaron quantum state, when the PN
potential although present is negligible, or towards the
small adiabatic polaron quantum state, when this poten-
tial plays an essential role. In the former case there is an
additional crossover, the one from large to the small adi-
abatic polaron, as indicated by the dashed curve in Fig-
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Fig. 1. Schematic phase diagram for the polaron problem in
terms of the e-p coupling constant g and the electron mass
mel (arbitrary units). Full lines denote QCP’s or crossovers,
which could be responsible for the breaking of the translational
symmetry of the lattice. The broken line denotes the crossover
that is associated to the pinning of the polaron to the lattice.

ure 1. Importantly, this behavior can never correspond to
the breakdown of the translational symmetry of the lattice
(i.e., to QCP), because, as already mentioned, the latter is
consumed by the electron adiabatic self-trapping QCP or
by the corresponding crossover. It appears therefore that
the electron adiabatic self-trapping on the lattice provides
a critical test for the applicability of TPT. In this context
it is natural to study the low g side of the problem, be-
cause TPT is the expansion in terms of g. If TPT is able
to hold through this crossover or QCP it is likely that it
applies, at least in principle, to all values of g. But then,
so does also the theory which starts from the broken sym-
metry side, and it is only a matter of convenience which
approach is to be used when.

In the present paper, TPT is tested on the discrete
1D Holstein model. This model provides a simple ex-
ample of the general situation described above. For suf-
ficiently fast electrons it exhibits a pair of nonadia-
batic/adiabatic crossovers, which replace QCP’s [18]. The
small g crossover corresponds to the electron self-trapping
in the state of the large adiabatic Holstein polaron [19,
20]. At sufficiently large g it is supplemented by the
large/small adiabatic polaron crossover in the PN poten-
tial, which is thus well separated from the electron self-
trapping crossover. It will be argued here that TPT can
reach beyond the low g electron self-trapping showing ex-
plicitly that this QCP is replaced by the crossover and that
the lattice coarsening (PN, Umklapp) effects are negligible
in this case. Finally, some plausible arguments are given
which indicate that TPT is valid for all values of g, al-
though the full proof of this assertion requires additional
considerations.
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2 General

The Holstein Hamiltonian on the discrete 1D lattice with
L sites is given by (� = 1)

Ĥ =
L/2−1∑

−L/2

[−t c†r(cr+1 + cr−1) + ω0 b†rbr − g c†rcr(b†r + br)]

(1)
where the fermion and boson operators cr and br on the
site r are defined in the usual way. Equation (1) is meant
to describe N electrons subjected to hopping t along the
chain and to the local interaction g with the displacements
of the lattice ur = x0(b†r + br). At g = 0 the latter behave
as harmonic oscillators with frequency ω0 and the zero-
point displacement x0 =

√
1/2Mω0, where M is the ionic

mass. The properties of the Holstein Hamiltonian for a
given L and N are thus described in the simple 2D pa-
rameter space, e.g. in terms of g/ω0 and α = ω0/2t. The
only adimensional quantity independent of M that can be
constructed from g/ω0 and α is Λ = α g2/ω2

0, which has
to appear naturally (instead of g2/ω2

0) in the adiabatic
regime, of interest here.

The structure of TPT for the Hamiltonian (1) and sim-
ilar models was examined in references [22–24]. The main
conclusion in reference [24] was that the polaron properties
can be conveniently extracted from the correlation func-
tions which form the basis of the diagrammatic version
[21] of TPT. Two types of correlation functions are to be
distinguished in this respect, namely those which by con-
struction conserve the number N of electrons, and those
which do not. The displacement-displacement correlation
function D belongs to the first class, and the electron prop-
agator G to the second, because it changes N by ±1. In
the polaron case D = D(1) is to be taken at N = 1 and,
consistently, G = G(0) at N = 0. G(0) describes the propa-
gation of an electron intermittently added to the system of
bosons. Actually, on using the Lehmann representation of
G(0) it turned out [24] that the most important properties
of the polaronic correlations can be calculated from the
corresponding irreducible electron self-energy Σ(0) alone.
Σ(0) gives the position of the polaron bands, in particular
the value of the ground state energy, the effective mass
of the polaron, and, in the continuous limit, the polaron
width, as will be further discussed below.

The reduction of the problem to the calculation of
Σ(0) represents an important simplification, because at
N = 0 all fermionic (Pauli) correlations are eliminated
from the outset. This contrasts with the calculation [24]
of the ground state energy from its direct diagrammatic
expansion at N = 1, where the electron exchange effects
disappear from the result only after tedious cancellations.

This important simplification appears formally in the
exact expression for Σ(0), given in Figure 2 in the usual
[21] diagrammatic language. In contrast to the general N
case, the wavy line in Figure 2 represents the free N =
0 displacement-displacement correlation function D(0) =
D0,

Fig. 2. The exact electron self-energy Σ(0). The double line
is the exact G, the shaded triangle is the exact vertex and the
wavy line is the free phonon propagator D0.

D0 =
1
2

[
1

ω − ω0 + iη
− 1

ω + ω0 − iη

]
.

Indeed, at N = 0, the phonon renormalization, which
starts necessarily with the creation of the electron-hole
pair, is impossible: there is no electron in the system, ad-
ditional to that created intermittently. In other words, the
electron described by G(0) can only advance in time in Fig-
ure 2 until it is annihilated, i.e., G(0) can have poles only
in the lower ω-half-plane. This holds in particular for the
free electron propagator G

(0)
0 ,

G
(0)
0 (k, ω) =

1
ω − ξk + iη

. (2)

For further convenience the zero of the free electron energy
ξk in equation (2) is taken, unlike in equation (1), at k = 0,

ξk = 2t(1 − cos (k)) . (3)

Figure 2 also contains the triangular vertex correc-
tion of Figure 3c originally discussed by Migdal [25] in
the limit of a large number of electrons N . At large N ,
especially when the soft-phonon renormalizations of the
phonon propagator are important, this vertex correction
can sometimes be neglected. However, at N = 0, when
D(0) = D0 in Figure 2, the vertex correction can be as
important as the corresponding self-energy correction, as
will be further seen below. The fact that the “soft-phonon”
corrections do not appear at N = 0 in Figure 2 does not
mean that the phonon propagator D(1) at N = 1 is not
developing a soft-phonon branch, as a signature of the
polaronic correlations. It does, but this branch does not
enter the calculations of Σ(0) in the small-N hierarchy of
the correlation functions.

In order to emphasize that at N = 0 the electron can
only advance in time, the irreducible Σ(0) of Figure 2 can
be represented by the expansion, order by order in g. In
Figure 3 the arrow on the free electron line G(0) of equa-
tion (2) points explicitly forwards in time. As usually, the
diagrams in Figure 3 represent the perturbation series in g
either in the direct or in the reciprocal space. Concerning
the propagation in space it should be noted that Σ2 and
the non-crossing contribution ΣNC

4 are local because so
is D0 of equation (3), in contrast to the crossing diagram
ΣC

4 which contains also the phonon-assisted intersite prop-
agation. In terms of Figure 2, ΣC

4 represents the leading
(Migdal) vertex correction to Σ(0). It will be shown below
that in the large adiabatic polaron regime the non-local
contributions of the crossing diagrams to the low-energy
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Fig. 3. Second- and fourth-order diagrams for Σ(0).

part of the electron spectrum are equally important as the
local contributions of the NC diagrams.

The low-energy properties are associated with the po-
laron spectrum ξ̃k. Assuming that the perturbation series
for Σ(0) shown in Figure 3 is meaningful, ξ̃k is the solution
of the equation

ξ̃k = ξk + ReΣ(0)(ξk, ξ̃k) , (4)

where ReΣ(0) represents the real part of Σ(0). It is im-
plicit in the concept of the quantum polaron, as of the
coherent quantum state, that the imaginary part of Σ(0)

is infinitesimally small around the polaron pole ξ̃k. This is
shown later to be consistent with the present analysis and,
anticipating this result, no distinction is made further be-
tween ReΣ(0) and Σ(0) itself. The energy of the k = 0
state in the lowest polaron band is obviously related to
the ground state energy. Noting that the ground state en-
ergies E

(1)
0 (0) and E

(0)
0 (0) of the noninteracting (g = 0)

N = 1 system and the N = 0 system, respectively, are
taken to coincide by choosing ξk=0 = 0 in equation (3),
the ground state energy gain ∆ of the N = 1 system with
finite g is

∆ = E
(1)
0 (0) − E

(1)
0 (g) = −Σ(0)(k = 0,−∆) , (5)

according to the Lehmann representation of G(0). It is
worthy of note that the higher energy solutions of equa-
tion (5) give the values of the polaron k = 0 energies of
the excited polaron bands. It is reiterated that the upper
index in equation (5) and elsewhere denotes the number
of electrons involved.

The behavior of ξ̃k in the vicinity of k = 0 defines
the polaron mass Mp which is given by the derivates of
Σ(0)(ξk, ω) at k = 0 and ω = −∆,

M−1
p = 2t

1 + ∂Σ(0)/∂ξk

1 − ∂Σ(0)/∂ω
. (6)

It is worth noting that the denominator in equation (6)
taken at arbitrary k gives the corresponding electron spec-
tral density.

Finally, it will be shown latter that the polaron width
can be related to ∆ of equation (5), in particular for the
large adiabatic polaron. This completes the list of the main
polaron properties (energy, mass, width) which can be de-
rived from Σ(0)(k, ω). The next step is the examination of
Σ(0)(k, ω) itself.

3 Low-order diagrams

The behavior of the leading (skeleton diagram) diagram
Σ2 (dropping henceforth the (0) superscript) of Figure 3
is quite instructive [24]. Σ2 is given as

Σ2 = − g2

4πt
I(ε) (7)

with

I(ε) =
2π

L

L/2−1∑

−L/2

1
ε + 2 sin2 (πm/L)

, (8)

where

ε =
ω0 − ω

2t
= α − ω

2t
, (9)

and the integer m is related to the phonon wavevector q
by the Born-van Kàrmàn boundary conditions,

q = 2πm/L . (10)

The sum (8) can be expressed in the closed, analytical
form for arbitrary ε > 0. The regime of interest here is
L−2 < ε � 1. For ε > L−2 finite size effects can be
neglected, i.e., the sum in equation (8) can be turned into
the integral over q. If ε � 1, qc =

√
2ε plays the role

of the infrared cutoff in this integration. In other words,
2 sin2 (q/2) = 1 − cos(q) in equation (8) can be replaced
then by q2/2 and integrated from qc to infinity, yielding

I(ε) ≈ π
√

2/ε . (11)

The same result is obtained by taking the continuous limit
in the Hamiltonian (1) from the outset, except that the
present procedure shows that the corrections due to the
lattice coarsening (to the Umklapp processes) are of the
order of ε � 1 itself.

In the weak-coupling limit, when the ground state en-
ergy shift ∆ of equation (5) is small ∆ � ω0, ω = −∆ can
be neglected in ε of equation (9) appearing in combined
equations (5) and (11). Taking thus ε ≈ α � 1 leads to

∆ ≈ g2

ω0

√
α = 2tΛ

√
α . (12)

This apparently is a nonadiabatic result, because ∆ is de-
pendent on the ionic mass M through α. In the weak-
coupling limit L−2 < ε ≈ α � 1 thus ensures validity of
the continuous [24] rather than of the adiabatic [22] ap-
proximation. Alternatively, the inequality L−2 < ε � 1
may be thought [24] of as fixing the order of the limits,
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first L → ∞, and then t/ω0 → ∞, in the search for a
nontrivial adiabatic regime.

In this context, the nonadiabatic nature of equation
(12) for α < 1 suggests the calculation of the higher order
diagrams ΣNC

4 and ΣC
4 of Figure 3 in the first place. The

two internal frequency integrations in those diagrams can
be carried out easily to give

ΣNC
4 =

g4

(2t)3
I ′(ε) I(ε + α) (13)

ΣC
4 = − g4

(2t)3
∑

q,q′

1
[ε + 2 sin2 (q/2)]

1
[ε + 2 sin2 (q′/2)]

× 1
[ε + α + 2 sin2 ((k + q − q′)/2)]

. (14)

where I(ε) in equation (13) is given by equation (8), I ′(ε)
is its derivative with respect to ε, while q, q′ and k in equa-
tion (14) are given by equation (10). Translational invari-
ance was used in equation (14) to associate the dependence
of ΣC

4 on the external momentum k with the convolution
of q and q′, i.e., with the crossing of two phonon lines in
Figure 3c. In contrast, as already mentioned, ΣNC

4 (like
Σ2) is local, i.e., independent of k.

While I(ε) and thus I ′(ε) of equation (13) are known
in the closed form for ε > 0 arbitrary, ΣC

4 calculated in
Appendix is exhibited here only in the interesting limit
L−2 < ε + α � 1, when the q, q′ summations in equation
(14) can be turned into the infrared singular integrations.
Together with equations (13) and (11) this gives

ΣNC
4 = − g4

(2t)3
1√

ε3(ε + α)
, (15)

ΣC
4 = − g4

(2t)3
2
√

ε +
√

ε + α

ε
√

ε + α

× 1
k2 + 2(2

√
ε +

√
ε + α)2

, (16)

both results holding with the accuracy 1/(ε + α).
Equations (15) and (16) can be used first to define the

range of validity of the low-order perturbation theory by
comparing Σ2 and Σ4 at k = 0 and ω = −∆ of equations
(5). The two become comparable for ∆ comparable to ω0,
i.e., for

g/ω0 ≈ α−1/4 ⇒ Λα−1/2 ≈ 1 , (17)

with α, Λ � 1. In Ref.[24] the crossover condition (17) was
derived from D(1) (at N = 1), on considering the average
number of excited phonons and on requiring that the latter
is at most of the order of unity. Here, this condition follows
from the electron self-energy Σ(0), on the same physical
grounds, determining when the two-phonon processes in
Figure 3 are becoming equally important as the single-
phonon processes.

The main contribution to ΣC
4 comes from the non-

local (k < ε + α) phonon-assisted processes. Indeed, the

local contribution of ΣC
4 , obtained by integrating equation

(A.4) or approximately the long-wave limit of this expres-
sion (16) over k, is apparently negligible with respect to
the local ΣNC

4 . In other words, for ε + α � 1 the local
contribution of the quartic non-crossing diagram and the
non-local k ≈ 0 contribution of the quartic diagram are
equally important for the values of parameters satisfying
equation (7) in determining the ground state energy and
the polaron mass, given by equations (5) and (6), respec-
tively. This regime is thus beyond the reach of dynamical
mean field theory [22].

As has been already emphasized before, the condition
(17) when introduced in equation (12) leads to

∆ ≈ 2tΛ2 , (18)

for α � 1, where, once again, Λ = g2/2tω0 is indepen-
dent of ionic mass. The estimate (18) for the ground state
energy is therefore adiabatic, i.e., the condition (17) cor-
responds to the nonadiabatic/adiabatic crossover line in
the g/ω0, α parameter space of the Holstein Hamiltonian.
Actually, the result (18) is, up to the numerical coefficient,
the same as the obtained from the symmetry broken side
[26,9], by the self-trapping of the electron in the contin-
uous version of the Holstein Hamiltonian (1). In this ap-
proach, the condition (17) appears as restricting the con-
tinuous adiabatic theory to the values Λα−1/2 > 1, Λ < 1.
For Λα−1/2 ≈ 1 the nonadiabatic corrections are becom-
ing appreciable (resulting finally in equation (12) for small
couplings). On the other hand, associating Λ−1 through
∆ = g2/ω0d with the polaron width d by d ∼ Λ−1,
the condition Λ � 1 keeps the continuous theory valid
not only on the crossover line Λα−1/2 ≈ 1 but also for
Λα−1/2 � 1.

It remains thus to be shown within TPT that the in-
frared singular (continuous), adiabatic result (18) holds
not only on the crossover line (17) in the 2D parameter
space but also for Λα−1/2 � 1, as long as the continuous
(infrared singular) approximation is valid due to Λ � 1.
Such a step amounts to the demonstration that TPT can
reach beyond the nonadiabatic/adiabatic crossover (17),
associated with the symmetry breaking. Apparently this
requires the consideration of the infinite TPT series in
Figure 3.

4 Infinite series

The general diagram of Figure 3 can be evaluated in prin-
ciple by using the usual diagrammatic sum rules [21]. The
class of non-crossing (NC) diagrams shown in Figure 4, ob-
tained by generalizing ΣNC

4 to the order 2p, are especially
simple because they are local. The structure of the pth or-
der NC diagram, proportional to g2p, is easily understood
by noting that the external electron phonon bubble differs
from Σ2 by the fact that the single G0 in Σ2 is cut in two
G0’s by the (p − 1) insert. Cutting G0 in two amounts to
the taking derivative of Σ2 with respect to a parameter
in G0, analogously to the text-book demonstration of the
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Ward identities. For p = 2 this procedure gives immedi-
ately the result (13) and iterates it to the order p, with
I(ε) given by equation (8),

ΣNC
2p = ANC

p

g2p

t2p−1
I ′(ε) I ′(ε+α) ... I(ε+(p−1)α) . (19)

The numerical coefficients ANC
p are not of particular inter-

est here, as only the scaling properties of Σ are considered.

Fig. 4. The class of non-crossing diagrams corresponding to
equation (19).

The situation is more intricate with crossing diagrams,
except in the particularly simple limit t ≈ 0 (α ≈ ∞),
where the result has been obtained to all order in g [22].
In order to make the discussion more transparent, k is set
equal to zero (as appropriate for the calculation of the
ground state energy). In addition, unlike in equation (19)
or equation (A.4), but as in equation (16), the infrared
limit is taken from the outset on assuming

ε + (p − 1) α < 1 , (20)

i.e., ε and α small.
The p = 2 example of this procedure is given by equa-

tion (16) taken at k = 0. It is instructive to study first this
example further in the limit ε � α (keeping ε + α � 1),
anticipating that, for g/ω0 > α− 1

4 the physically relevant
value of ε, ε∆, is much larger than α, i.e., that ∆ � ω0. In
this limit both contributions ΣNC

4 and ΣC
4 of equations

(15) and (16) have the same leading behavior in ε large,
Σ4 ∼ g4/t3ε2. This result can be derived simply not only
for ΣNC

4 but for ΣC
4 too, on noting that the main con-

tribution to the infrared singularity in the limit (20) with
ε � α comes from q ≈ q′ in equation (14). Setting q = q′
in the convolution term, the infrared integrations over q
and q′ decouple, each yielding the contribution given by
equation (11), the overall results being ΣC

4 ∼ g4/t3ε2.
However, the described approximation affects the numer-
ical prefactor and the α/ε corrections in ΣC

4 , which are
thus out of control in this approximation. In return, the
benefit of described procedure is that it is apparently it-
erative in the sense that in the general pth order diagram
it applies, under the condition (20), to any segment of the
type shown in Figure 5. This suggests that the full k = 0
irreducible pth order self-energy contribution Σ2p has the
same form as ΣNC

2p of equation (19) in the infrared limit,
i.e.,

Fig. 5. Decoupling of infrared integrations over q and q′ in
equation (16).

Σ2p = 2t Ap

( g

2t

)2p 1

ε
3p
2 −1

σ2p(ε/α) , (21)

with the numerical coefficients Ap and the function σ2p

undetermined here. Importantly, however, for later dis-
cussion, σ2p(ε/α) tends to a finite constant for ε/α large
provided that p satisfies the condition (20). All diagramms
of the sixth-order in g checked satisfy equation (21).

Turning to the scaling properties of Σ2p it should be
noted that, due to its particular structure in α, the series
(21) can be rescaled from the scale 2t to the scale ω0, by
introducing

η = ε/α =
ω0 − ω

ω0
,

to obtain

Σ2p = ω0 Ap σ2p(η) (Λα−1/2)p/η
3p
2 −1 . (22)

This scaling of Σ2p has many satisfactory features. Σ2p is
proportional to ω0 for any p, showing explicitly that not
only the crossing diagrams at k ≈ 0 are proportional to
ω0 (”Migdal theorem”) but that so are the NC ones, and
thereby that both have to be treated on equal footing.
In fact, the number of crossing diagrams nC is large for
large p (nC = 1 for p = 2, nC = 8 for p = 3). Even more
fundamentally, the proportionality to ω0 shows that the
quantum polaron is being considered here, because ω0 in
equation (22) is to be replaced everywhere by �ω0 when
� is not taken equal to 1 in equation (1). Equation (22)
also shows that ω0 should not to be set equal to zero too
early [22] (or inconsistently) when the adiabatic limit is
considered. In this respect it is also gratifying that the
adiabatic parameter Λ is exhibited explicitly in equation
(22).

Equation (22) is also handy in the sense that, after
using ε � 1, α � 1 in the inequality (20), to produce the
continuous limit in equation (21), it can use (the physical
values) η = ε/α � 1 to make the prefactor of (Λα−1/2)p

small when Λα−1/2 is large. This provides a strong ar-
gument in favor of the convergence of the series (22), al-
though the coefficients Ap and σ2p(∞) are unknown. Here,
it can be only noted that equation (22) is valid for arbi-
trary large p in the limit α � 1 provided that the physical
relevant values of ε are sufficiently small, ε � 1.
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5 Quantum polaron properties from TPT

Assuming thus that the infinite series (22) is convergent
in the sense that it defines a function

Σ = 2t α F (η, Λα−1/2) ,

the physically relevant values η∆ of η are defined by equa-
tion (4). In particular, equation (5) for ∆ can be conve-
niently rewritten as

η∆ − 1 = F (η∆, Λα−1/2) , (23)

using equation (9). This shows that η∆ can be expressed
as

η∆ − 1 = f(Λα−1/2) . (24)

Noteworthy is the fact that when Σ is real, as it turns out
to be in equation (22), the diagrammatic TPT of equation
(23) is equivalent to the Wigner TPT. The Schrödinger
TPT leads straightforwardly to equation (24) but through
a series for which the convergence properties are less trans-
parent than those of equation (22). The scaling relations
of the type (24) are common in infrared problems [27].

The function f in equation (24) has apparently two
regimes Λα−1/2 ≶ 1 with the crossover at Λα−1/2 ≈ 1.
For Λα−1/2 < 1 it can be expanded as a Taylor series in
Λα−1/2 with a constant term omitted. Keeping in mind
that ∆ vanishes at g = 0 this immediately gives the nona-
diabatic result (12), to the lowest order in g. The crossover
at Λα−1/2 ≈ 1 is also already discussed in equations (17)
and (18), as occurring towards the large, adiabatic Hol-
stein polaron. The true test of the ability of TPT to reach
beyond this crossover corresponds, as already mentioned,
to the regime Λα−1/2 > 1 for Λ � 1.

The only way for equation (24) to have the adiabatic
solution for Λα−1/2 � 1 is that the corresponding asymp-
totical behavior of f(Λα−1/2) is

f(Λα−1/2) = Λ2α−1[c0+c1α
1/2Λ−1+c2αΛ−2+...] , (25)

because only then α, i.e., ω−1
0 ∼ √

M , cancels out (rather
than goes to zero) from equation (24), to the leading order
in Λ−1α1/2 small. The final result is then

∆ = 2tΛ2[c0 + c1α
1/2Λ−1 + c2αΛ−2 + ...] . (26)

The result (26) satisfies the initial assumptions α � 1,
ε∆ � 1, η∆ = ε∆/α � 1, which led to equations (21-23).
Two other equivalent ways to express those conditions are
α � 1, Λ � 1, Λα−1/2 � 1, or ω0/2t � 1, ∆/2t � 1,
∆/ω0 � 1.

The result (26) not only reproduces the ground state
energy (18) [19,20], but also agrees with its corrections
[9]. The evaluation of these from the broken symmetry
side is quite intricate, providing the first few coefficients:
the even coefficients c0, c2, c4, are finite and the odd ones,
c1 and c5, vanish. The coefficient c2 is associated with

the energy proportional to ω0 and independent of Λ. This
energy corresponds to the adiabatic reduction of the zero-
point energy of the local harmonic modes which describe
the polaron deformation. c4 corresponds to the nonadi-
abatic kinematic corrections. The vanishing of the odd
coefficients can be understood upon noting that when the
leading term for ∆ in equation (26) is inserted in η∆ of
equation (22),

Σ
(0)
2p ∼

(
1

Λ2α−1

)p−1

,

i.e., f of equation (24) becomes a function of Λ−2α rather
then of Λα−1/2.

It can be objected that equation (26) follows from the
assumption that TPT is convergent and adiabatic, rather
than from the corresponding rigorous proofs. However,
TPT is not worse in this sense than the broken symme-
try approach. The latter also starts by assuming that the
large adiabatic polaron exists and subsequently derives its
properties and the conditions of validity. It is therefore all
the more gratifying that those properties appear to be
the same from the translationally invariant and from the
broken symmetry side.

Actually, it is possible to extend the agreement be-
tween the two approaches from the condensation energy
(26) to the polaron with d and to the polaron mass Mp. In
the continuous limit no ground state energy is associated
with the polaron motion, i.e., the whole ∆ is associated
with the electron localization and with the concomitant
displacements within the polaron width d. The localiza-
tion energy to one site is g2/ω0 and representing ∆ as
∆ = g2/ω0d, it follows that

d = Λ−1[c′1 + c′2α
1/2Λ−1 + ...] .

The kinematic corrections to the main Holstein result
d ∼ Λ−1 have not been considered before. A more rig-
orous proof of the relation ∆ = g2/ω0d requires the con-
sideration of spatial correlations, the task in which the
diagrammatic TPT has certain technical advantage over
the Wigner or Schrödinger TPT.

The same type of scaling can be applied to the finite
k states in equation (4) and in particular to the effective
polaron mass (6). The derivate ∂Σ(0)/∂ω at ω = −∆,
associated with the electron spectral density, is given by
the function F (η, Λα−1/2) of equation (23). On the other
hand the evaluation of ∂Σ/∂ξk requires the generalization
of equation (16), taken at finite k, to all crossing diagrams.
Instead of that it is convincing enough to note that equa-
tion (16) makes it plausible to set

1
2t Mp

= h(Λα−1/2) ,

in analogy with equation (24). The asymptotic behavior
of the function h for Λα−1/2 large must give Mp linear
in M ∼ α−2 to the leading order in Λ−1α1/2 small, i.e.,
Mp ∼ g8. This also is a well-known result, derived previ-
ously from the broken symmetry side. On the other hand,
the scaling properties of the electron spectral density in



8 The European Physical Journal B

M , and then in g, or vice-versa, remain to be determined
because the present scaling approach only connects the
two.

6 Concluding remarks

The central conclusion of this paper is that the properties
of the large adiabatic Holstein polaron on the 1D lattice
can be determined by the TPT summed to the infinite or-
der in g. The main properties, such as the polaron conden-
sation energy, its width and the effective mass, can all be
determined from the self-energy associated with the inter-
mittent addition of one electron to the system of bosons.

Actually, a scaling analysis rather than a precise cal-
culation was carried out under the assumption that the
infinite order TPT series defines a function, which has
a meaningful asymptotic behavior in the strong-coupling
limit: this is termed a ”convergence” of TPT. The analysis
in question was applied to the extreme limit Λα−1/2 � 1
and Λ � 1, (α � 1), which ensure the validity of, re-
spectively, the adiabatic and the continuous approxima-
tion. Although a full agreement is obtained with the cor-
responding results derived from the symmetry broken side
it is of interest, as explained in Section 1, to supplement
the discussion with a few remarks which concern the ap-
plicability of TPT to other cases.

The inequality (20), taken in the ground state, i.e.,
with η = η∆ of equation (23) defines the highest order
Σ2p̄ of equations (21) and (22) for which ∆ � p̄ ω0. It is
obvious that p̄ is the average number of phonons in the
system excited by the added electron for a given Λα−1/2.
In equation (23) p̄ is taken to infinity, but it is interesting
to consider the situation when p̄, i.e., Λα−1/2 is large but
finite. For p � p̄ the self-energy Σ2p is infrared singular
and, according to equation (22), Σ2p ∼ (η∆)1−3p/2 to the
leading order in η large. For p̄ < p < α−1 the self-energy
Σ2p is still infrared singular, Σ2p ∼ (η∆)−3p̄/2(p/p̄)−1/2.
However, for p � α−1 (finite) Σ2p tends to the well-known
[22] discrete, nonadiabatic t ≈ 0, small bandwidth limit
Σ2p ∼ (1/p!)2.

These observations help to elucidate the nature of the
corrections to the large adiabatic polaron, additional to
the non-adiabatic c2, c4 corrections, present already in
the continuous limit. It appears that the Umklapp cor-
rections to the infrared Σ2p for p � p̄ are presumably
responsible for the build up of the PN barrier. Indeed, the
latter are known to become important for p̄ ≈ α−1 (i.e.,
for Λ ≈ 1), when the other candidate for Umklapp correc-
tions, namely the infrared terms Σ2p with p̄ < p < α−1,
are squeezed out. On the other hand, the terms at p > α−1

are expected to lead to the non-adiabatic corrections
to the translational dynamics of the small polaron. The
strength of the p � p̄ terms can be evaluated using a scal-
ing procedure different from equation (25), which shows
that the PN potential is adiabatic, i.e., depends only on t
and Λ, and is exponentially small [28] for Λ � 1.

This reasoning shows that the TPT series evolves
smoothly from one regime to another, by changing the

nature of the main p � p̄ terms and the nature of its
p � p̄ tail. The present result for the large adiabatic Hol-
stein polaron, together with the well-known applicability
of TPT to the Lang-Firsov limit for arbitrary g, suggests
then strongly that TPT can cover the whole 2D parameter
space of the Holstein Hamiltonian.

An interesting unsolved problem in which TPT can be
useful refers to the evaluation of the polaron mass Mp for
the adiabatic polaron propagation through the PN barri-
ers. Actually, the quantum tunneling through the PN bar-
riers makes Mp nonlinear in M in a way not yet clearly
distinguished from that in the nonadiabatic regimes.

Finally, it is clear that the problems, analogous to
those opened and partially answered here, arise in con-
nection to numerous quantum crossovers related to the
symmetry breaking, and that some of the ideas developed
here may apply to those cases too. As mentioned in Sec-
tion 1 this concerns in particular the problems of quantum
solitons or doping the 2D Mott insulator, which are cur-
rently subjects of extensive theoretical investigation.

We wish to thank D. Feinberg, V.V. Kabanov, and A.S.
Mishchenko for interesting correspondence. This work was
supported by the Croatian Government under Projects No.
0035007 and No. 0119256.

Appendix

The crossing fourth-order diagram in Figure 3c is a con-
volution,

ΣC
k (ω) =

g2

N

∑

q

Gk−q(ω − ω0) Γq(ω) , (A.1)

with Gk(ω) the free electron propagator and Γq(ω) the
leading Migdal vertex correction, the latter given by a
convolution

Γq(ω) =
g2

N

∑

q′
Gq′−q(ω − 2ω0) Gq′(ω − ω0)

=
g2

t2
1
N

zq

∑

q′

z2
q′

(zq′ − zqy+)(zq′ − zqy−)(zq′ − x+)(zq′ − x−)
,

(A.2)

where zq = eiq and

[
γn = 1 + nα − ω/2t > 1 , x± = γ1 ±

√
γ2
1 − 1 ,

y± = γ2 ±
√

γ2
2 − 1 , x+x− = y+y− = 1

]
.
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As x−, y− < 1, by integrating over the unit circle,
1/N

∑
q → ∮

dφ/2π → ∮
|z|=1 dz/iz2π, one obtains

Γq(ω) =
g2

t2
zq

(
zqy−

(zqy− − zqy+)(zqy− − x+)(zqy− − x−)

+
x−

(x− − zqy+)(x− − zqy−)(x− − x+)

)

= −g2

t2
x+y+ − x−y−

(x+ − x−)(y+ − y−)
z−1

q

(z−1
q − δ+)(z−1

q − δ−)
(A.3)

where δ± = y±/x∓ is real, and δ+δ− = 1. Substituting
Γq(ω) into equation (A.1) gives

ΣC
k (ω) = −g4

t3
z−1

k

x+y+ − x−y−
(x+ − x−)(y+ − y−)

×
∮

dz

i2π

1
(z − z−1

k x+)(z − z−1
k x−)

z

(z − δ+)(z − δ−)
=

− g4

t3
x2

+y+ − x2
−y−

(x+ − x−)2(y+ − y−)
1

x2
+y+ + x2−y− − 2 cos (k)

.

(A.4)

In the continuous limit one obtains:

x± = 1 + ε ±
√

2ε + ε2 ≈ 1 + ε ±√
2ε

y± ≈ 1 + ε + α ±
√

2(ε + α)

ΣC
k (ω) = − g4

(2t)3
2
√

ε +
√

ε + α

ε
√

ε + α

1
k2 + 2(2

√
ε +

√
ε + α)2

,

(A.5)

i.e., the result given by equation (16). The contribution to
the effective polaron mass in equation (6) from ΣC

k (ω) in
the numerator is obtained as
[
t−1∂ΣC

k (ω)/∂k2|k=0 =
1
2

g4

(2t)4
1

ε
√

ε + α

1
(2
√

ε +
√

ε + α)3

∼ g4

t4
1
Λ6

∼ t2ω6
0

g8

]
.
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